Telecommunication Transmission Systems for Signalling and Control Systems

Version 2.0

Issued date: 29 September 2017
Important message

This document is one of a set of standards developed solely and specifically for use on Transport Assets (as defined in the Asset Standards Authority Charter). It is not suitable for any other purpose.

The copyright and any other intellectual property in this document will at all times remain the property of the State of New South Wales (Transport for NSW).

You must not use or adapt this document or rely upon it in any way unless you are providing products or services to a NSW Government agency and that agency has expressly authorised you in writing to do so. If this document forms part of a contract with, or is a condition of approval by a NSW Government agency, use of the document is subject to the terms of the contract or approval. To be clear, the content of this document is not licensed under any Creative Commons Licence.

This document may contain third party material. The inclusion of third party material is for illustrative purposes only and does not represent an endorsement by NSW Government of any third party product or service.

If you use this document or rely upon it without authorisation under these terms, the State of New South Wales (including Transport for NSW) and its personnel does not accept any liability to you or any other person for any loss, damage, costs and expenses that you or anyone else may suffer or incur from your use and reliance on the content contained in this document. Users should exercise their own skill and care in the use of the document.

This document may not be current and is uncontrolled when printed or downloaded. Standards may be accessed from the Asset Standards Authority website at www.asa.transport.nsw.gov.au

© State of NSW through Transport for NSW 2017
Standard governance

Owner: Lead Signals and Control Systems Engineer, Asset Standards Authority
Authoriser: Chief Engineer, Asset Standards Authority
Approver: Executive Director, Asset Standards Authority on behalf of the ASA Configuration Control Board

Document history

<table>
<thead>
<tr>
<th>Version</th>
<th>Summary of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First issue</td>
</tr>
<tr>
<td>2.0</td>
<td>Second issue clarifies requirements in Section 8, Section 9, Section 10 and Section 11</td>
</tr>
</tbody>
</table>

For queries regarding this document, please email the ASA at standards@transport.nsw.gov.au or visit www.asa.transport.nsw.gov.au

© State of NSW through Transport for NSW 2017
Preface

The Asset Standards Authority (ASA) is a key strategic branch of Transport for NSW (TfNSW). As the network design and standards authority for NSW Transport Assets, as specified in the ASA Charter, the ASA identifies, selects, develops, publishes, maintains and controls a suite of requirements documents on behalf of TfNSW, the asset owner.

The ASA deploys TfNSW requirements for asset and safety assurance by creating and managing TfNSW's governance models, documents and processes. To achieve this, the ASA focuses on four primary tasks:

- publishing and managing TfNSW's process and requirements documents including TfNSW plans, standards, manuals and guides
- deploying TfNSW's Authorised Engineering Organisation (AEO) framework
- continuously improving TfNSW’s Asset Management Framework
- collaborating with the Transport cluster and industry through open engagement

The AEO framework authorises engineering organisations to supply and provide asset related products and services to TfNSW. It works to assure the safety, quality and fitness for purpose of those products and services over the asset's whole-of-life. AEOs are expected to demonstrate how they have applied the requirements of ASA documents, including TfNSW plans, standards and guides, when delivering assets and related services for TfNSW.

Compliance with ASA requirements by itself is not sufficient to ensure satisfactory outcomes for NSW Transport Assets. The ASA expects that professional judgement be used by competent personnel when using ASA requirements to produce those outcomes.

About this document

This standard establishes the minimum requirements for the provision of transmission systems used only by signalling and control systems for heavy rail. This standard may be used by a number of different engineering disciplines, such as signalling, safety, systems, telecommunication and control systems.

Version 1.0 (issue date 13 October 2016) of this document superseded SPG 1256 Communication Links for Signalling Control, version 1.1.

This document is a second issue. The changes in version 2.0 clarify requirements in Section 8, Section 9, Section 10 and Section 11.
Foreword

This document details generic requirements (based on the referenced international standards and guidelines), which can be implemented using a multitude of industry approved techniques. In order to explain requirements clearly, generic reference architecture is explained in the document. Background information, guidance and examples are provided in the appendices of this document to assist the reader in understanding TfNSW specific issues.

The requirements for reliability, availability, maintainability, safety (RAMS) and security provided in this standard have been drawn from a range of international standards and guidelines. Specifically, the RAMS requirements are based on IEC 62278 Railway applications – Specification and demonstration of reliability, availability, maintainability and safety (RAMS); the safety requirements are based on IEC 62280 Railway applications – Communication, signalling and processing systems – Safety related communication in transmission systems and the security requirements are based on ISO/IEC 27033 Information technology - Security techniques - Network Security and NIST 800 82 Guide to Industrial Control Systems Security.
Table of contents

1. Introduction .. 7
2. Purpose .. 7
2.1. Scope ... 7
2.2. Application ... 9
3. Reference documents ... 9
4. Terms and definitions .. 11
5. Signalling and control system generic architecture .. 12
6. Failure requirements ... 14
7. Delay requirements ... 15
8. Availability requirements .. 16
9. Reliability requirements .. 16
10. Maintainability requirements .. 17
11. Diversity and redundancy requirements .. 18
12. Safety requirements ... 19
13. Security requirements ... 19
14. Telecommunication cables requirements ... 21
15. Configuration management requirements ... 21

Appendix A Supporting information ... 22
A.1. Failure .. 22
A.2. Transmission delays .. 23
A.3. Reliability, availability, maintainability and safety (RAMS) ... 23
A.4. Diversity and redundancy .. 25
A.5. Cyber security .. 28

Appendix B Signalling and control systems communication paths in TfNSW 31

Appendix C General characteristics and categorisation of transmission systems 40
C.1. Dedicated physical links .. 40
C.2. Circuit switched networks .. 41
C.3. Packet switched networks ... 42
C.4. Wireless ... 43

Appendix D Threats and defences analysis example .. 45

Appendix E Communication path presentation example ... 46
1. Introduction

Transmission systems are part of the signalling and control systems and are used for exchange of information between applications that can be sensitive, critical and safety related.

An application is an entity which is able to communicate with another entity over the communication path that includes software, hardware and firmware.

The transmission system that interfaces with the signalling and control system plays a critical role in safe, reliable and efficient rail operations.

Some requirements are apportioned to the transmission systems to meet the signalling and control systems requirements. This standard defines the minimum requirements apportioned to the transmission system used within the signalling and control systems. More stringent requirements can be apportioned to the transmission system by some of the applications of the signalling and control systems.

2. Purpose

This standard establishes the minimum generic requirements for the provision of transmission systems for current and future Transport for NSW (TfNSW) signalling and control systems to provide safe, reliable and efficient rail operations.

2.1. Scope

This standard covers the minimum generic transmission systems requirements for the signalling and control systems to fulfil their performance and functional requirements.

The requirements are framed around the information being passed over the transmission system between applications and the end-to-end performance to be provided by the transmission system.

These requirements cover the following transmission mediums used for signalling and control systems within TfNSW:

- telecommunication cables
- circuit switched networks
- packet switched networks
- wireless networks and links

This standard covers the transmission systems within the following configurations:

- signalling safety systems
• between the signalling safety system and other systems such as traffic management systems and condition monitoring
• internally within the traffic management system’s components, such as servers, workstations, loggers
• interface between the traffic management systems
• interface between the traffic management systems and other systems such as timetable servers, monitoring systems, web publishing systems and external loggers
• remote components or systems accessing the signalling and control systems
• onboard installations on heavy rail rolling stock assets owned by TfNSW

All protocol related requirements within this standard set the requirements at the open systems interconnection (OSI) data link layer and above as detailed in ISO/IEC 7498-1 Information Technology – Open Systems Interconnection – Basic Reference Model: The Basic Model – Part 1. The OSI physical layer details the electrical, mechanical and procedural interface to the transmission medium.

This standard covers the controls and configuration of the physical medium, such as cables and network elements, in relation to their security, transmission system categorisation and availability.

This standard does not cover requirements for the components of the transmission subsystems as the performance of the signalling and control systems is based on the end to end performance of the transmission system used between applications.

Requirements for transmission subsystems and their components are detailed in T MU TE 41001 ST Packet Switched Networks – Wired Networks and T MU TE 41004 ST Packet Switched Networks – Wireless Local Area Networks.

Any conflict that exists between this standard and other standards will be resolved by the ASA.

This standard does not require additional safety integrity level (SIL) activities to those described in IEC 62280 Railway applications - Communication, signalling and processing systems – Safety related communication in transmission systems and IEC 62425 Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling.

T MU MD 00005 GU Type Approval of Products is applicable to equipment or products used within the transmission systems utilised by the signalling and control systems' applications.
2.2. **Application**

This standard applies to all parties involved in the provision of new transmission systems for both new and existing sites in the metropolitan rail area for the whole asset life cycle of the signalling and control system.

If the transmission system is used for multiple purposes, then this standard applies only to parts of the transmission system that are used by signalling and control systems information transfer as long as the independence of the signalling and control system information can be demonstrated so far as is reasonably practicable (SFAIRP).

This standard is applicable to transmission systems used within subsystems or systems that are part of another system.

This standard applies to the modification of existing installations. It does not apply to projects that are currently in progress or any approved projects that are implemented at new sites.

This standard applies if the transmission system is used for the maintenance and monitoring of the signalling and control systems and its components, including the transmission systems.

This standard can be used by other disciplines such as signalling, safety and control systems to determine the apportioned transmission system requirements based on the signalling and control system requirements.

If the signalling and control system does not specify the transmission system requirements for its design requirements, then the transmission system requirements detailed in this standard will be applicable as default requirements.

3. **Reference documents**

The following documents are cited in the text. For dated references, only the cited edition applies. For undated references, the latest edition of the referenced document applies.

International standards

- IEC 62278 Railway applications - Specification and demonstration of reliability, availability, maintainability and safety (RAMS)
- IEC 62279 Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems
- IEC 62280 Railway applications - Communication, signalling and processing systems – Safety related communication in transmission systems
- IEC 62425 Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling
- IEC 62443 (all parts) – Industrial communications networks – Network and system security
ISO/IEC 7498-1 Information Technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model

ISO/IEC 27033 (series) Information technology - Security techniques - Network security

Australian standards

Transport for NSW standards

T HR TE 01001 ST Communication Outdoor Cabling

T HR TE 01002 ST Signalling Bungalow Communications Cabling

T MU MD 00005 GU Type Approval of Products

T MU MD 20001 ST System Safety Standard for New or Altered Assets

T MU TE 41001 ST Packet Switched Networks – Wired Networks

T MU TE 41004 ST Packet Switched Networks – Wireless Local Area Networks

TMM P001 Copper Cable Termination

TMM P021 Optical Fibre Cable Joining, Termination and Management

Other reference documents

Australian Government 2016, Australia’s Cyber Security Strategy

International Electrotechnical Committee 2004, Reliability data handbook – Universal model for reliability prediction of electronics components, PCBs and equipment – IEC/TR 62380 Ed 1.0 (Bilingual 2004)

International Union of Railways (UIC) 2013, IP Introduction to Railways - Guideline for the fixed telecommunication network version 2.0

National Institute of Standards and Technology (NIST) 2008, Guide to SSL VPNs – NIST Special Publication 800-113

National Institute of Standards and Technology (NIST) 2014, Framework for Improving Critical Infrastructure Cybersecurity
4. Terms and definitions

The following terms and definitions apply in this document:

AEO Authorised Engineering Organisation

apportionment process whereby the RAMS elements for a system are subdivided between the various items which comprise the system to provide individual targets (IEC 62278:2002)

ASA Asset Standards Authority

closed transmission system fixed number or fixed maximum number of participants linked by a transmission system with well-known and fixed properties, and where risk of unauthorised access is considered negligible (EN 50159:2010)

common cause failure a failure which is the result of one or more events which causes a coincidence of failure states of two or more components leading to a system failing to perform its required function

IP internet protocol

link a physical connection between two participants for the purpose of transmitting and receiving information

metropolitan rail area The rail freight network and the rail passenger network within the metropolitan rail area bounded by Newcastle (in the north), Richmond (in the northwest), Bowenfels (in the west), Macarthur (in the southwest) and Bomaderry (in the south), and all connection lines and sidings within these areas, but excluding private sidings

MTBF mean time between failures

MTTF mean time to failure

open transmission system transmission system with an unknown number of participants, having unknown variable and non-trusted properties, used for unknown telecommunication services and having the potential for unauthorised access (EN 50159:2010)

OSI open systems interconnection

RAMS reliability, availability, maintainability and safety

RBD reliability block diagram

safety case documented demonstration that the product complies with the specified safety requirements (EN 50159:2010)

safety related carries responsibility for safety

SFAIRP so far as is reasonably practicable
SIL safety integrity level; number which indicates the required degree of confidence that a system will meet its specified safety functions with respect to systematic failures (EN 50159:2010)

TfNSW Transport for New South Wales

threat potential violation of safety (EN 50159:2010)

transmission system service used by the application to communicate message streams between a number of participants, who may be sources or sinks of information (EN 50159:2010)

5. Signalling and control system generic architecture

The signalling and control system that is referred in this standard is based on the generic distributed system architecture as shown in Figure 1.

Note: For simplicity, Figure 1 does not show components and interfaces that are not relevant to this standard.

The signalling and control system can contain a number of components, which can be a product or another system. For example, a system can contain interlocking, radio block centre (RBC) and traffic management systems. The overall system requirements are distributed system components according to their allocated functionalities and capabilities. These requirements are specified in standards or system specifications. Each product, system or system component in turn defines its constraints and assumptions in order to fulfil its allocated requirements.

When information exchange takes place between applications within a system using a transmission system, then the transmission systems become a part of the system. In most cases, communicated information can have sensitive, critical and safety critical characteristics, such as railway signalling. Therefore transmission systems play a critical role for safe and reliable rail operations.

The interface components shown in Figure 1 form part of the system components and provide the interface between applications and the transmission system for each system component; for example, a serial card or network card or universal serial bus (USB) to interface serial link or network or signalling data link.
Transmission Systems:
- Any type of cable, including optical cable
- Packet Switching Network
- Circuit Switched network
- Radio or WiFi

Note: Each System Component may have its own local Transmission Systems. Not drawn in order to keep the figure less complicated.

System Components:
- Server
- Network equipment
- PC or laptop or tablet or mobile device
- Supporting equipment, such as KVMA, convertors
- RBC, OIX, Object Controllers
- IO Systems

Interface Components
- Serial Interface
- Parallel Interface
- Network Interface
- USB

Application:
- Software
- Firmware
- Executive
- Ladder Logic
- Hardware

Communication Path between applications

Figure 1 – Distributed signalling and control system's generic reference architecture

T MU MD 20001 ST System Safety Standard for New or Altered Assets and the following international standards provide the safety management framework that is usually applied to products and systems:

- IEC 62278 Railway applications - Specification and demonstration of reliability, availability, maintainability and safety (RAMS)
- IEC 62279 Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems
- IEC 62280 Railway applications - Communication, signalling and processing systems – Safety related communication in transmission systems
- IEC 62425 Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling

Based on the safety management framework, exported hazards, safety related application constraints and assumptions associated with the products and systems can have residual hazards that cannot be managed as part of the product or system. These hazards related to or able to be controlled through the transmission system should be managed SFAIRP as part of the integration of a safety related product or system within the transmission system.

Therefore, a number of requirements are allocated to the transmission systems, which are derived from system components, such as constraints, assumptions and residual hazards. Due
to the nature of delivering a safe and reliable system, some requirements are defined as processes, arguments and their outcomes.

The following examples show the allocation of performance requirement:

i. If the overall availability of the system is specified as 99.99% and the system component has an allocated availability of 99.995% as a result of apportioning process, then the system component can fulfil its availability requirement if the availability of the transmission system component is 99.999%.

ii. As a result of the safety case outcome, the interlocking system can communicate with another system over a category 2 transmission system due to its protocol characteristics in order to fulfil its safety requirements.

The requirements of this standard takes into account the heterogeneity of transmission systems and allows for the use of different types of transmission mediums and equipment to be used between signalling and control systems' applications.

The transmission system requirements are for the complete communications path between signalling and control system applications as shown in Figure 1, including equipment and transmission mediums.

All transmission systems within the signalling and control system should be part of the system safety assessment. Different parts of the transmission systems can be assessed in various system components' safety assessment. For example, transmission systems used by an interlocking can be part of the interlocking's safety assessment. If that transmission system is not used by any other system, then the transmission system need not be assessed.

If the transmission system is used in more than one application, then the interactions and effects on other applications should be considered and analysed, including hazards and impact on performance requirements as detailed in this standard.

Context and background information for requirements are provided in Appendix A.

Generic requirements for transmission systems are based on the information provided in Appendix B.

6. Failure requirements

Each application within the signalling and control systems shall specify its complete failure criteria for each protocol used to communicate with other applications over the transmission system. If any failure criterion is associated with one or more parameters, then each parameter shall be specified.

The following requirements shall be defined as a minimum:

- complete failure criteria of individual message
retry criteria

timeliness criteria

message ordering criteria

The failure criteria of the overall transmission system shall be the most stringent failure criteria if different types of messages are used within the same transmission system.

Planned activities, which contain assessed and approved controls in place for safe and reliable signalling and train operations cannot be assumed as a failure.

Random failures within the transmission systems shall be analysed for impact or contribution to the failure of the signalling and control system.

The AEOs' processes and procedures should mitigate the systematic failures within the transmission system using industry acceptable engineering techniques such as those mentioned in IEC 62278.

7. Delay requirements

Transmission delays determine the responsiveness and timeliness of the information passed between one signalling and control system application to another. These attributes are detailed as part of the communication protocols and are apportioned to the transmission systems as transmission delay requirements.

Transmission system delay requirements shall be specified by the signalling and control system application using the following generic parameters:

- delays in milliseconds
- number of retries initiated by the application

If the protocol used between applications requires other delay requirements or parameters, then they shall be specified to set the requirements on the transmission systems.

Communication path is the complete path, which transfers message streams between two applications, including transmission mediums, equipment, technologies, interfaces and any other items, which contribute to communication.

The default transmission system delay from one application to another application over the complete communication path shall be less than 100 ms (95% of the distribution of all delays), excluding the application's processing time.

The transmission system delays can be caused by all transmission mediums, equipment, and utilisation of diversity configurations between two system components, which are used by applications as shown in Figure 1.
The transmission system delay requirements should take into account, but are not limited to the following: the communication path's characteristics, switching to diverse communication path, encryption/decryption, message overheads of the transmission system, processing, routing, checking, retries, jitters, latency.

8. **Availability requirements**

The availability of signalling and control systems is based on the operational impacts such as delays, disruptions and operational procedures that have lower level of safety.

The signalling and control systems have three levels of availability requirements in the communication path between two signalling and control systems. These levels are based on their allocated criticality and safety requirements for a function.

The following are the three levels of requirements:

i. Safety related functions - used in the safety applications and signalling data. The performance of the safety related functions shall not be less than 99.999%.

ii. High availability functions - used in the operationally critical applications that do not have safety implications, such as indication and controls within the traffic management system. The performance of high availability functions shall not be less than 99.995%.

iii. Standard functions - used in all other applications, such as logging. The performance of standard functions shall not be less than 99.99%.

In the absence of signalling and control systems apportioned requirements, the default availability requirement of the transmission system shall be 'safety related function'. The availability requirements shall be demonstrated by evidence based on industry accepted techniques such as reliability block diagram (RBD). The evidence based analysis shall also cover common cause failures, redundancy and so on. The evidence shall be provided in order to manage the systematic failures within the transmission systems.

9. **Reliability requirements**

The reliability of the signalling and control system depends on the transmission system used in the communication path between one signalling and control system application and another.

Reliability requirements are applicable for each communication path and non-redundant configuration to support the confidence level of the operational availability requirement.

The signalling and control systems have three levels of reliability requirements for each complete communication path between two signalling and control systems. These levels are based on their allocated criticality and safety requirements for a function.
The following are the three levels of reliability requirements:

i. For the safety related functions, the mean time between failures (MTBF) or the mean time to failure (MTTF) shall not be less than 100,000 hours.

ii. For high availability functions, the MTBF or MTTF shall not be less than 70,000 hours.

iii. For standard functions, the MTBF or MTTF shall not be less than 50,000 hours.

In the absence of signalling and control systems apportioned requirements, the default reliability requirement of the transmission system shall be ‘safety related function’. Reliability calculations shall be based on industry accepted techniques such as RBD or the prediction data which is based on IEC/TR 62380.

Information can be extracted from existing site applications and if the amount of information is statistically justifiable, then the empirical reliability information shall be used for the reliability calculations.

The possibility of having multiple or secondary failures due to failure and repair delays within the transmission system shall be considered.

10. Maintainability requirements

Maintainability is determined by the extent to which a failed component or system is restored or repaired to the specified condition within the specific period of time when maintenance is performed in accordance with prescribed procedures.

Maintainability requirements are applicable for each communication path and non-redundant configuration.

The maintainability parameters shall support the reliability and availability requirements set for the transmission system in accordance with Section 8 and Section 9 of this document.

The signalling and control systems have three different levels of downtime requirements according to their allocated criticality and safety requirements for a function.

The following are the three levels of down time requirements:

i. For safety related functions, the mean time to restore the transmission system shall not exceed 1 h on average for each complete communication path.

ii. For high availability functions, the mean time to restore the transmission system shall not exceed 3.5 h on average for each complete communication path.

iii. For standard functions, the mean time to restore the transmission system shall not exceed 5 h on average for each complete communication path.

In the absence of signalling and control systems apportioned requirements, the default maintainability requirement of the transmission system shall be ‘safety related function’.
The following parameters shall be set for the transmission system so that the availability and reliability requirements are fulfilled:

- mean time between maintenance, both corrective and preventative
- mean time to maintain, both corrective and preventative

11. **Diversity and redundancy requirements**

The transmission system shall provide the required diversity and redundancy as apportioned and defined by the requirements for the signalling and control systems applications. In the absence of such requirements, the default diversity and redundancy shall be 'route diversity' for the telecommunication cables and 'full diversity' for the switched network and packeted network as detailed in Appendix A.4.

The transmission system design shall be supported by evidence based risk analysis and industry standard methodologies such as RBD in order to prove that all requirements are fulfilled. The common cause failure analysis shall also be a part of the analysis in order to identify such failure conditions and shall be incorporated into the RAM requirement analysis of the transmission system.

If the transmission system’s diversity and redundancy requirements cannot be met, then an evidence based analysis shall be conducted stating the reasons for deviation from the requirements and impact on the availability requirement.

The default convergence or changeover, which can cause a failure as detailed in Section 6 shall be less than or equal to 150 ms (95% of the distribution of all convergence or changeover time).

The convergence or changeover times for the complete communication paths shall be less than 75% of the maximum disruption time that the application can tolerate, including protocol specific retries configuration. If the convergence or changeover time of the complete communication path is greater than the tolerable maximum disruption time, then its impact and mitigation shall be analysed with supporting evidences.

If the communication path between two applications contains different types of transmission mediums or technologies, then each transmission medium or technology shall be analysed individually in order to determine the diversity characteristics of the complete communication path within the transmission system. The overall diversity or redundancy of the transmission system shall be equal to the lowest level of diversity and redundancy of the components of the transmission system.

For dedicated communication paths, such as telecommunication cables or circuit switched networks, the design shall consider the following:

i. one of the redundant paths shall be as direct as possible, that is, the path shall traverse the shortest path length
ii. at least one complete path shall use TfNSW infrastructure

iii. the path shall be a dedicated path installed independently for the purpose

iv. the path shall pass through the minimum number of equipment

v. the path configuration shall be the simplest that can be achieved

The level of compliance and the reason for variation, if any, for each communication path shall be documented.

12. Safety requirements

All communication paths used between signalling and control system application within the transmission system shall be categorised as detailed in IEC 62280. This categorisation shall be specific to the proposed configuration and its components. The categorisation shall be demonstrated by a safety case based on IEC 62425. The assessment shall be kept up-to-date during the complete life cycle of the transmission system.

If the safety case does not exist or the safety case does not satisfy the requirements of IEC 62425, then the transmission system shall be classified as 'category 3 and open transmission system'.

The specified transmission system category shall be applicable to the complete communication path as shown in Figure 1 including a redundant communication path.

If multiple communication paths with different transmission systems requirements use the same transmission system, then the most stringent transmission system requirements shall be implemented.

13. Security requirements

The transmission systems used within the signalling and control systems shall provide security against emerging, known and potential IT threats, irrespective of its safety functions.

The signalling and control systems shall be assumed as industrial automation and control systems as detailed in IEC/TS 62443-1-1 Industrial communication networks – Network and system security – Part 1-1: Terminology, concepts and models. All requirements, technologies and techniques detailed within IEC 62443 that are applicable to transmission systems shall be considered and supported with evidences.

The security measures within the transmission system shall not impact the ability of the signalling and control system to meet its performance requirements, particularly, the transmission delays.

Some industry accepted security measures are detailed in Appendix A.5.1, Appendix A.5.2 and Appendix A.5.3.
The physical security of the equipment and transmission mediums shall be provided for all types of transmission systems used within the signalling and control systems.

If the encryption is performed outside of the signalling and control system application, then the encryption device shall be assumed to be a part of the interface component as shown in Figure 1.

The security assessment of the transmission system shall be based on the evidence based threat, and risk and hazard identification process.

This assessment shall include the recommendations and requirements detailed in the following publications:

- IEC 62443 *Industrial Communication Networks – Network and System Security*

The generic hazards including, but not limited to the following shall be managed as a minimum:

- unauthorised access to communication path by local access, remote access or interception or monitoring at an intermediate location
- unauthorised manipulation of transmitted information, such as repetition, deletion, masquerade, delay, corruption, insertion, re sequencing
- unauthorised manipulation of communication path configuration, such as deletion, alteration or corruption of firmware, software or data (design, configuration, historical)
- prevention or downgrading quality of communication, such as denial of services
- exploitation of design, installation or maintenance weaknesses
- malicious malware
- unintended introduction of vulnerabilities or configuration changes or data left behind
- vulnerabilities during the adverse conditions
- restoring the system after an incident

If the communication path between two signalling and control system applications contains different types of transmission mediums or technologies, then all communication segments shall be considered individually and then the overall security shall be analysed.

If the encryption is used as part of the security management, then a risk assessment and hazard analysis for encryption key management shall be performed. This analysis shall include the complete asset life cycle and the interface and integration to other keys or key management already in use within the system.
14. Telecommunication cables requirements

Telecommunication cables installation shall be done in accordance with the requirements of T HR TE 01001 ST Communication Outdoor Cabling and T HR TE 01002 ST Signalling Bungalow Communications Cabling.

Telecommunication equipment used within the signalling and control systems environment shall be installed and identified in accordance with TMM P001 Copper Cable Termination if copper cable is used, or in accordance with TMM P021 Optical Fibre Joining, Termination and Management if optical fibre cable is used.

15. Configuration management requirements

The transmission system's configurations and characteristics shall be documented to analyse, review, update and maintain the transmission system over its complete asset life cycle.

The AEOs shall have processes and procedures for configuration management that complies with T MU AM 04001 PL TfNSW Configuration Management Plan.

The configuration of the transmission system shall be managed according to its identified categorisation that is based on IEC 62280. This process shall cover the complete asset life cycle.

The following information shall be part of the configuration management as a minimum:

- the complete communication paths between applications, including main and alternate communication paths
- each transmission medium within the path, such as telecommunication cables, switched network
- interfaces between each transmission medium and their interface parameters
- diversity characteristics of each transmission medium, including the common cause failure
- communication characteristics of each transmission medium, for example, speed and security measures
- specific implementation details
- geographical information such as location, building, room
- handover content between different phases of the asset life cycle, for example, hazard logs
- high level drawings that can be used for high level safety assessment purposes, as shown in the example provided in Appendix E
Appendix A Supporting information

This appendix provides supporting information for requirements detailed in this standard. The aim is to provide generic consolidated information for various engineering disciplines, such as signalling, systems, safety, control systems and testing.

Information is tailored for TfNSW operational environment and is provided within the context of signalling and control systems.

A.1. Failure

To specify the RAM requirements, failures within the transmission system should be specified within the context of signalling and control systems.

In this standard, the communication path within the transmission system is considered as a simple ‘pipe’ connection between two applications and failure is defined for the signalling and control system applications. Only one failure mode exists in the signalling and control system's point of view.

For the purpose of this document, failure is defined as the transmission system being unable to meet the specified requirements. The integrity of the message stream is compromised when any one of the following does not fulfil the specified requirements:

- message order
- message content
- message delivery timeliness, including throughput and responsiveness

These are generic failure criteria. The specific failure criteria should be identified according to the protocol used between applications. The protocol can have additional or different parameters for the failure criteria, which should be defined by the signalling and control systems as a requirement.

If the receiving application determines that the message is not usable for its intended purpose, then the application can assume that the message has failed.

Failure of individual components of the transmission systems does not constitute a failure, as long as the communication between the applications are functioning according to the requirements including the protocol requirements, such as telecommunication cable or modem failures.

The following should not be assumed as a failure; however the communication protocols used between applications can define it otherwise:

- retries by application if the message delivery is unsuccessful
Note: A limited number of retries should be allowed before assuming integrity of the message stream is compromised.

- using a diverse or redundant path or system as long as the integrity of the message stream is not compromised during the changeover
- planned activities, which contain assessed and approved controls in place for safe and reliable signalling and train operations

A.2. Transmission delays

Transmission delay is measured as 'timeout' by signalling and control systems' application and the timeout starts when the complete message is transferred to the next OSI layer. The 'timeout' period stops when a complete message is received from the next OSI layer. These timeouts, as detailed in Appendix B, are based on the characteristics of the application and protocol, such as sensitivity and real time.

Depending on the protocol, a retry mechanism can be present that can improve the availability and also reduce the throughput of the transmission system. If the transmission delays exceed the specified requirements, then the application can timeout and this can impact the specified reliability and availability requirements that are stated in this standard.

A.3. Reliability, availability, maintainability and safety (RAMS)

As explained in Section 5, the transmission system is a part of the system and its requirements are derived from the signalling and control system's requirements. This relationship can be both ways, namely, the transmission system's requirements can influence the system requirements or the system or system component's requirements can influence the transmission system's requirements. In this standard the minimum transmission systems' RAMS requirements are apportioned from the overall signalling and control system's RAMS targets and requirements.

All requirements are applicable to the complete communication paths, including equipment, transmission mediums, redundancy and other components that make the complete communication path.

Security of the transmission systems is identified as one of the contributors of the transmission systems and RAM and categorisation requirements are detailed in Section 12.

Reliability requirements are applicable for each communication path, non-redundant configuration, to support the confidence level for the operational availability requirement. For example it is possible that operational availability requirement can be fulfilled with redundant but unreliable two communication paths.
It is possible that the operational availability requirement can be fulfilled with redundant configuration but it can be difficult to maintain two communication paths, which make the redundant configuration.

To support the maintainability requirements, the transmission system should have a number of functionalities such as the following:

- fault detection facilities
- fault isolation facilities
- secure remote management

The scope of maintainability should be based on the impact of failures and potential exposure for multiple failures.

A.3.1 Safety

An AEO is accountable for ensuring that a system has an overall safety case as detailed in IEC 62278 through the AEO's safety management framework. Products or system components, such as interlocking, used within the system as shown in Figure 1 can have their safety generic or specific cases and these safety cases can be used by the AEO or suppliers as part of their safety case. As an outcome of the safety case, they can have residual hazards or external constraints and assumption, which cannot be managed by the product or system components. If these identified residual hazards are related or able to be controlled by the transmission system, then they should be managed SFAIRP within the transmission system. For example, if the protocol used between two safety applications does not have an encryption function, then the classification requirements of communication paths between these two applications will be set to 'category 1'.

The overall system safety can be compromised if the transmission system cannot fulfil its allocated requirements. For example, if a signalling and control system application requires minimum category 2 transmission system for a particular protocol and the transmission system is category 3 or incorrectly identified as a category 2 transmission system, then the overall system safety requirement can be compromised.

The transmission system's hazard should be analysed for the complete transmission system life cycle and the overall system. The transmission system hazards should be reviewed regularly during the operational life of the system to identify and manage against emerging, known and potential IT threats and onsite access and remote access.

A.3.1.1 Classification of transmission systems

Normally products or system components define their transmission system's safety related constraints as the categorisation of the transmission system as detailed in IEC 62280.
The following preconditions determine the classification of transmission systems:

i. precondition 1 – the number of pieces of connectable equipment to the transmission system is known and fixed

ii. precondition 2 – the characteristics of the transmission system are known and fixed

iii. precondition 3 – the risk of unauthorised access to the transmission system is negligible

Based on these preconditions, IEC 62280 classifies transmission systems into the following three categories:

i. category 1 (closed transmission system) – the transmission system satisfies all preconditions

ii. category 2 (open transmission system) – the transmission system satisfies precondition 3, but not precondition 1 or precondition 2

iii. category 3 (open transmission system) – the transmission system does not satisfy precondition 3

In most of the cases, signalling and control system applications use a part or a specific configuration of the whole transmission system. If the complete transmission system is not used exclusively by the signalling and control system, then the generic categorisation of transmission systems will not be sufficient to mitigate all identified hazards. The safety case should be based on the specific configuration used and should cover the complete communication path between signalling and control system application as shown in Figure 1 regardless of different technologies or transmission mediums used within the transmission system.

Refer to Appendix C for guidelines on the classification of different transmission systems.

Refer to Appendix D for guidance on analysis of threats and defences.

A.4. Diversity and redundancy

Most of the safety or mission critical systems, which include signalling and controls systems, are based on fully redundant system design and the disaster recovery site, which is also a fully redundant system. Fully redundant signalling and control systems should be supported with fully redundant transmission system. One reason to have a fully redundant configuration is to eliminate the impact of the random common cause failures. Another reason is to improve reliability and availability of a system without any change in the reliability of the individual components. Maintenance activities can be performed without any impact on the system availability requirements. However, redundancy can have a negative impact on the maintainability due to the increased complexity.

The integrity between applications should be maintained within the signalling and control systems. This makes the communication between applications critical. If the communication between applications fail, then the rail operation can be interrupted and it cannot be restored.
until integrity between the applications are fully established. For example, if transmission system delay is 200 ms and two retries are allowed for a particular protocol between two applications and then one message fails three times consequentially, the application can assume that the communication path integrity has been compromised. If the transmission system detects a failure and switches to the redundant communication path, then this changeover period should be set so that there is no impact on the application integrity.

One of the factors determining the effectiveness of the redundancy is the diversity, which defines the independence of components. Diversity for telecommunication cables is different from other transmission mediums such as switched network or packeted network.

Diversity should include the common mode failure of power supply within the limits of the operational environment.

A.4.1 Telecommunication cables

Telecommunication cables can consist of fibre or copper based bearers. Copper cables can have multiple pairs, while fibre cables can have multiple cores. Telecommunication cables can be laid between two ends with varying degrees of physical separation as detailed below and are listed in order of improving diversity:

i. **No diversity**: The primary cable and the redundant cable use the same transmission medium. For example, using the same physical cable.

ii. **Cable diversity**: Primary and redundant cables are used. The cables are physically located next to each other. For example, different cables in one pipe or duct.

iii. **Duct diversity**: Primary and redundant cables are used. The cables are physically located away from each other in the same cable route. For example, diverse cables in different pipes and ducts.

iv. **Route diversity**: Primary and redundant cables are used. The cables are installed in physically separate cable routes. For example, diverse cables in diverse cable route, one each side of the railway line. The route diversity is detailed in T HR TE 01001 ST Communication Outdoor Cabling.

v. **Full diversity**: Primary and redundant cables are used. The cables are installed in physically separate cable routes that do not share a common path. For example, diverse cables in diverse cable route, in different sections of the railway line.

A.4.2 Switched network and packeted network

Other types of telecommunication mediums are based on networking technologies, such as packeted or switching. The diversity for these types of transmission systems is different from that of telecommunication cables; however diversity does rely on the selection of diverse cables between the components in the transmission system.
Figure 2 shows examples of network connection.

The diversity is determined by the following two stages:

i. Independency and common mode failure characteristics of the application's first connection to the network at both ends including the telecommunication cables; for example, cable 1n1, router 1n and cable 1n2 or cable 1t1 or cable 1u1, modem 1u and cable 1u2 as shown in Figure 2.

ii. Network between the first transmission system's equipment at both ends; for example, between the network end of the cable 1n2 and the network end of cable 1t1 as shown in Figure 2.

Based on these stages, network diversity is classified into the following three types which are listed in order of improving diversity:

i. No diversity: Redundant applications are connected to transmission system's equipment, which have a common point of failure. The telecommunication cable’s diversity can be less than the 'duct diversity'. For example, the router 1m is used for redundant applications or router 1n uses router 2n to access the network as shown in Figure 2 or if the telecommunication cable’s diversity is less stringent than the duct diversity.

ii. Partial diversity: Redundant applications are connected to the transmission systems' equipment, which have no common point of failure. For example, the network equipment in different cubicles and the telecommunication cables can have 'duct diversity' as a
minimum. However, the network beyond the first transmission system's equipment can have a common point of failure or vice versa.

iii. Full diversity: Redundant applications are connected to transmission system's equipment, which have no common point of failure and transmission system beyond the first transmission system's equipment which has no common point of failure.

A.5. Cyber security

As detailed in IEC 62443 the security objectives for industrial automation and controls systems are different from the objectives of information technology systems. As a result of that, most of the requirements of the following standards apply to industrial automation and controls systems; however some requirements are not applicable:

Appendix A.5.1, Appendix A.5.2 and Appendix A.5.3 detail three commonly used techniques used for the cyber security of the transmission systems.

A.5.1 Security levels

Similar to the safety integrity levels (SILs) for the safety system, security levels can provide a qualitative approach to address security for a zone or conduit as detailed in IEC 62443 Industrial communication networks – Network and system security Part 3-3: System security requirements and security levels.

A zone is a grouping of logical or physical assets that share common security requirements. A conduit is a logical grouping of transmission systems' assets that protects the security of the communication paths it contains.

The following are five security levels (SL) that are applicable to a zone or conduit:

i. SL 0: No specific requirements or security protection necessary.

ii. SL 1: Protection against casual or coincidental violation.

iii. SL 2: Protection against intentional violation using simple means with low resources, generic skills and low motivation.

iv. SL 3: Protection against intentional violation using sophisticated means with moderate resources, specific skills and moderate motivation.
v. SL 4: Protection against intentional violation using sophisticated means with extended resources, specific skills and extended motivation.

The vulnerabilities can be addressed based on the security levels that are identified using the risk assessments.

The identified security should be assessed and maintained during the asset lifecycle. This can be achieved using the three types of security:

i. SL (target): a target security level should be assigned to the zone or conduit

ii. SL (achieved): measured security level after all counter measures are implemented

iii. SL (capability): counter measures and inherent security properties of devices and systems within zone or conduits that contribute to security of zone or conduit

The objective is that at any given time the SL (achieved) should be greater than or equal to the SL (target) for a zone or conduit. SL (capability) contributes to SL (achieved).

A.5.2 Defense-in-depth

The United States Department of Homeland Security's report, *Recommended Practice: Improving Industrial Control Systems Cybersecurity with Defense-In-Depth Strategies* recommends a 'defense-in-depth' strategy which layers security mechanisms such that the impact of a failure in any one mechanism is minimised. To implement such a strategy, a 'de-militarised zone' (DMZ) technique can be used, although other industry accepted techniques can be used to address security problems.

The following points should be considered during the design of a transmission system as a minimum:

- multiple layer strategy involving two or more different overlapping security measures
- using firewalls
- using proven technologies such as VPN, MPLS layer 2 pseudowire, VLL as detailed in NIST special publication 800-113 *Guide to SSL VPNs*
- using DMZ
- logically separated networks
- network segregation
- addressing redundancy and fault tolerance
- addressing common cause failure
- preventing man in the middle attacks
- adequate management controls
Security control at a lower OSI layer cannot provide protection for OSI higher layers if transfers between layers have no protection against potential threats.

Firewalls are a main security defence within a packeted network. Firewalls can create a secure zone if it is configured and maintained correctly. Refer to the National Institute of Standards and Technologies (NIST) special publication 800 82 *Guide to Industrial Control Systems (ICS) Security for guidelines on firewall rules* which should be considered during the design and maintenance of the network.

A.5.3 Encryption

Cryptographic mechanisms are one of the strongest ways to provide security services for electronic applications, protocols and for data storage. Communication integrity, authentication, authorisation and non-repudiation can be achieved with encryption based security measures.

Based on the safety assessment outcome, if the protocol used between two signalling and control system applications needs encryption in order to fulfil the safety requirements, then encryption should be implemented by the signalling and control system applications. Some legacy signalling and control systems cannot provide encryption within the application. If the transmission system cannot provide required protection, such as a category 1 transmission system, encryption can be provided as an external function, such as encryption hardware, which should be assumed as part of the interface component as shown in Figure 1. Interoperability, interconnectivity and key management should be part of the assessment process.

During the assessment process, applicable frameworks and standards should be identified and used.
Appendix B Signalling and control systems communication paths in TfNSW

The communication path parameters used between the signalling and control system applications are depicted in Figure 3, Figure 4 and Figure 5.

The general information that is mentioned in this appendix is based on the information collected from the AEOs, subject matter experts and from other international sources such as International Union of Railways: IP Introduction to Railways - Guideline for the fixed telecommunication network.

This information is based on simplified concepts and should be used as guidance to identify existing and future communication paths within the TfNSW signalling and control systems.

The abbreviations used within the figures are detailed in Table 1, Table 2 and Table 3.

Some communication paths can be identified but cannot be detailed due to lack of information. They are marked as to be detailed (TBD) within the tables and will be updated when information is available.

Each line can contain more than one communication path and each communication path can contain more than one protocol between signalling and control systems applications.

The information in the tables does not provide hazards and their mitigation. For detailed analysis and assessment, complete analysis should be performed as specified within this standard and other referenced international standards.

The following applies to the headers of Table 1, Table 2 and Table 3:

- Id - reference to Figure 3, Figure 4 and Figure 5
- Description - purpose of the interface
- Type - indicates the type of the communication environment
- Protocol - indicates the protocol used between two applications
- Timeout - configured timeout period for the protocol in milliseconds
- Availability - requirement for this interface
- Contains safety related data - indicates whether this interface transfers safety related information
- Security - indicates whether the protocol has security in order to maintain its integrity
- Encryption - indicates whether the protocol uses encryption
- Other IEC 62280 defences - indicates whether the protocol uses other defences as specified in IEC 62280
Suggested minimum category (cat) requirement - based on the protocol's characteristics and safety data requirements, suggested minimum transmission system category should be used between two applications

Some of the protocols detailed within Table 1 can be subject to intellectual property issues. It is the AEO's responsibility to resolve intellectual property issues with the product supplier.

Figure 3 illustrates the current main communication paths within the signalling and control systems used within TfNSW.

Figure 3 - Main communication paths within the signalling and control system

Table 1 provides an overview of the basic characteristics of main communication paths between signal and control system applications.
Table 1 – Guideline for main communication path within the signalling and control system

<table>
<thead>
<tr>
<th>Id</th>
<th>Description</th>
<th>Type</th>
<th>Protocol</th>
<th>Timeout</th>
<th>Availability</th>
<th>Contains safety related data</th>
<th>Security</th>
<th>Encryption</th>
<th>Other IEC 62280 defences</th>
<th>Suggested minimum cat requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS01</td>
<td>SSIS</td>
<td>IPC</td>
<td>RSA SSS protocol</td>
<td>NA</td>
<td>S</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS02</td>
<td>Sig View System</td>
<td>Serial/IP</td>
<td>SPG 01254</td>
<td>3 s</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS03</td>
<td>Phoenix</td>
<td>Serial/IP</td>
<td>SPG 01254</td>
<td>3 s</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS04</td>
<td>Adjacent TCS</td>
<td>IPC</td>
<td>SPG 01254</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS05</td>
<td>OSS</td>
<td>IPC</td>
<td>SPG 01254</td>
<td>200 ms</td>
<td>H</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS06</td>
<td>Monitoring</td>
<td>IPC</td>
<td>Internal – 1</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS07</td>
<td>Peer TCS</td>
<td>IPC</td>
<td>Internal – 1</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS08</td>
<td>Other servers</td>
<td>IPC</td>
<td>Various</td>
<td>NA</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>Limited</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS09</td>
<td>Maint WS</td>
<td>IPC</td>
<td>Internal – 1</td>
<td>200 ms</td>
<td>H</td>
<td>No</td>
<td>Limited</td>
<td>Limited</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS10</td>
<td>Signalling WS</td>
<td>IPC</td>
<td>Internal – 1</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>Limited</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS11</td>
<td>Storage</td>
<td>IPC</td>
<td>Internal – 1</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS12</td>
<td>Timetable server</td>
<td>FTP</td>
<td>FTP</td>
<td>NA</td>
<td>S</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS13</td>
<td>Future ATCS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>TCS14</td>
<td>Train describer</td>
<td>IPC</td>
<td>T HR SC 01251 SP</td>
<td>200 ms</td>
<td>VH</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS15</td>
<td>Telemetry</td>
<td>Serial</td>
<td>BR1631</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS15</td>
<td>Telemetry</td>
<td>Serial</td>
<td>BR1922</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS15</td>
<td>Telemetry</td>
<td>Serial</td>
<td>Genisys</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS16</td>
<td>IP display</td>
<td>IPC</td>
<td>Internal – 2</td>
<td>200 ms</td>
<td>H</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>TCS17</td>
<td>Interlockings</td>
<td>Serial</td>
<td>HDLC</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>Id</td>
<td>Description</td>
<td>Type</td>
<td>Protocol</td>
<td>Timeout</td>
<td>Availability</td>
<td>Contains safety related data</td>
<td>Security</td>
<td>Encryption</td>
<td>Other IEC 62280 defences</td>
<td>Suggested minimum cat requirement</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TCS17</td>
<td>Interlockings</td>
<td>Serial</td>
<td>Modbus</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS17</td>
<td>Interlockings</td>
<td>Serial</td>
<td>Genisys</td>
<td>200 ms</td>
<td>VH</td>
<td>Yes</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS18</td>
<td>Condition monitoring</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>TCS19</td>
<td>Remote terminal</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>TCS20</td>
<td>Maintenance terminal</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>TCS21</td>
<td>Adjacent IXL</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Most</td>
<td>Cat 1</td>
</tr>
<tr>
<td>TCS22</td>
<td>IXL internal</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Most</td>
<td>Cat 1</td>
</tr>
</tbody>
</table>
Figure 4 illustrates the current main communication paths within the signalling and control systems used for web publication purposes.

![Diagram of current main communication paths](image)

CURRENT MAIN WEB PUBLICATION SYSTEM COMMUNICATION PATHS

LEGEND
- Bi-directional communication path
- Single direction communication path
- Server
- PC Based Workstation
- Unique Communication Path Identifier

Figure 4 - Main communication paths used by web publishing system

Table 2 provides an overview of the basic characteristics of main communication paths within the signalling and control system applications used for web publishing.
<table>
<thead>
<tr>
<th>Id</th>
<th>Description</th>
<th>Type</th>
<th>Protocol</th>
<th>Timeout</th>
<th>Availability</th>
<th>Contains safety related data</th>
<th>Security</th>
<th>Encryption</th>
<th>Other IEC 62280 defences</th>
<th>Suggested minimum cat requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSE01</td>
<td>Train describer</td>
<td>IPC</td>
<td>T HR SC 01251 SP</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>WSE02</td>
<td>Peer OSS</td>
<td>IPC</td>
<td>Internal – 3</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>WSE03</td>
<td>South Coast server</td>
<td>IPC</td>
<td>T HR SC 01251 SP</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>WSE04</td>
<td>TLS</td>
<td>IPC</td>
<td>T HR SC 01251 SP</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>WSE05</td>
<td>SPI</td>
<td>IPC</td>
<td>T HR SC 01251 SP</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>WSE06</td>
<td>Replay work station</td>
<td>IPC</td>
<td>Internal – 3</td>
<td>200 ms</td>
<td>S</td>
<td>No</td>
<td>Limited</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
<tr>
<td>WSE07</td>
<td>Timetable server</td>
<td>FTP</td>
<td>FTP</td>
<td>NA</td>
<td>S</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Cat 2</td>
</tr>
</tbody>
</table>
Figure 5 illustrates the draft communication paths within the proposed ATCS.

This figure represents the future state and so some communication paths are unknown.

Figure 5 – Draft future communication paths

Table 3 provides an overview of the basic characteristics of future communication paths within the signalling and control system applications.
Table 3 – Guideline for future communication path requirements

<table>
<thead>
<tr>
<th>Id</th>
<th>Description</th>
<th>Type</th>
<th>Protocol</th>
<th>Timeout</th>
<th>Availability</th>
<th>Contains safety related data</th>
<th>Security</th>
<th>Encryption</th>
<th>Other IEC 62280 defences</th>
<th>Suggested minimum cat requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATE01</td>
<td>Disaster recovery</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE02</td>
<td>Long term storage</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE03</td>
<td>Work station</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE04</td>
<td>Timetable server</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE05</td>
<td>OSS</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE06</td>
<td>RBC</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE07</td>
<td>Interlocking</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE08</td>
<td>RBC IXL</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE09</td>
<td>RBC RBC</td>
<td>IPC</td>
<td>SubSet 098 v300</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE10</td>
<td>RBC Train</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE11</td>
<td>Adjacent IXL</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE12</td>
<td>Train detection system</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE13</td>
<td>Point system</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE14</td>
<td>Level Crossing</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE15</td>
<td>IXL IXL</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cat 3</td>
</tr>
<tr>
<td>ATE16</td>
<td>RBC Supporting systems</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ATE17</td>
<td>IXL Supporting systems</td>
<td>IPC</td>
<td>TBD</td>
<td>TBD</td>
<td>VH</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
The following acronyms and abbreviations are used in Table 1, Table 2 and Table 3:

FTP file transfer protocol

Genisys serial protocol developed by Union Switch & Signal

HDLC high level data link control

H high availability – 99.995%

Internal - x protocol developed and used for the existing TfNSW's control systems

IP internet protocol

IXL interlocking

Limited not addressing all security threats as listed in IEC 62280

MODBUS serial protocol developed by Modicon

OSS operational system server

RBC radio block centre

RSA SSS station SCADA system interface protocol developed and used for the existing TfNSW's control systems

S standard availability - 99.99%

SP passenger information system

SSIS station SCADA (supervisory control and data acquisition) interface system

TCS traffic control system

TLS train location system

VH very high availability - 99.999%
Appendix C General characteristics and categorisation of transmission systems

This appendix provides generic characteristics of transmission systems and an example of classification of transmission systems. This appendix is based on simplified concepts and configurations in order to provide simple examples and it should be used as guidance.

The current designs, existing implementations or new designs within the TfNSW network greatly deviate from these simplifications. Therefore, each project or design should identify the characteristics of the transmission system requirements including the complete system life cycle and then produce a safety case in accordance with IEC 62280.

A generic categorisation of transmission systems against generic data communications hazards can be done. However, specific or unique hazards for the particular protocol usage should be identified for each communication path between the applications. If deviations from the generic hazards and their treatments applicable to the transmission systems used within the complete communication path are identified then those deviations should be analysed and mitigated.

If a communication path passes through a third party transmission system, including a public switched telephone network (PSTN) or a leased line, then a safety case for the overall system safety should also include those transmission systems.

If mixed telecommunication technologies are used within a communication path, then the integrity, safety and security of the overall communication system should be determined by considering all aspects of each transmission medium and any interface issues should be identified between different transmission mediums.

The International Union Railways document, UIC IP Introduction to Railways – Guideline for the fixed telecommunication network provides information on the different technologies used within the railway environment, which can apply to TfNSW heavy rail network.

Appendix C.1 to Appendix C.4 explain the general features of different types of transmission systems and the classification of these transmission systems based on their features.

This appendix does not identify hazards and their mitigation as the detailed configuration of the transmission system is not known and their configuration can change over time.

C.1. Dedicated physical links

The dedicated physical links should have the following general security and safety features and should be demonstrated by evidence based detailed analysis:

- the equipment components and physical transmission mediums, such as cables, should be located in secure places
• link has a simple and fixed configuration
• link can have a limited configuration change due to the static nature of the system
• the risk of unauthorised access is negligible
• the design and configuration should be fully documented and kept up to date, so that the transmission system can be maintained adequately

A transmission system containing these security and safety features can be classified as 'category 1 and closed transmission system' in accordance with IEC 62280.

C.2. Circuit switched networks

Circuit switched network is a type of telecommunications network in which users establish a dedicated communications channel (circuit), which guarantees the full bandwidth of the channel and remains connected for the duration of the communication session through the network regardless of the channel used by the users.

Synchronous digital hierarchy (SDH) or asynchronous transfer mode (ATM) networks can provide dedicated links between two locations. These technologies are proven old technologies and are used extensively in Australia and other countries. They provide a dedicated communication channel between two ends irrespective of whether actual communication is taking place or not. The channel remains reserved and protected from competing users.

The circuit switched networks should have the following general security and safety features and should be supported by evidence based detailed analysis:

• the equipment components and physical transmission mediums should be located in secure places
• the design and configuration should be fully documented and kept up to date, so that the transmission system can be maintained adequately
• network configuration is not simple
• network can have occasional configuration changes due to multiple user requirements
• the risk of unauthorised access is negligible

A transmission system containing these security and safety features can either be classified as 'category 1 and closed transmission system' or 'category 2 and open transmission system' based on the safety case.

It cannot be classified as 'category 3 and open transmission system' as detailed in IEC 62280 as precondition 3 can be fulfilled satisfactorily.
C.3. **Packet switched networks**

Packet switched network is a networking communications method that groups all transmitted data into suitably sized blocks, which are transmitted through a transmission medium that can be shared by multiple simultaneous communication sessions.

The packet switched network is the preferred transmission medium and most of the communications between locations happen using this transmission system due to its low cost internet protocol (IP).

Messages used for this transmission system can be created as follows:

- the direct interface to a packet switched network
- serial communication can be converted into IP messages using a media converter

User datagram protocol (UDP) should not be used as a number of protocol defences recommended in IEC 62280 cannot be supported.

Two generic packet switched configurations are analysed as examples in Appendix C.3.1 and Appendix C.3.2.

C.3.1 **Virtual private network**

The virtual private network (VPN) is a technology used within the packet switched network to provide secure communication. A number of different VPN types are available and these are implemented at different levels of OSI layers.

The virtual private network should have the following general security and safety features and should be demonstrated by evidence based detailed analysis:

- the equipment components and physical transmission mediums should be located in secure places
- the design and configuration should be fully documented and kept up to date, so that the transmission system can be maintained adequately
- network configuration can be very complex and difficult to maintain the configuration data
- network configuration can change frequently due to multiple user requirements
- the risk of unauthorised access is negligible

A transmission system containing these security and safety features can either be classified as 'category 1 and closed transmission system' or 'category 2 and open transmission system' based on the safety case.

It cannot be classified as 'category 3 and open transmission system' as detailed in IEC 62280 as precondition 3 can be fulfilled satisfactorily.
C.3.2 Connectionless or connection oriented packet switching

Packets are routed individually, sometimes resulting in different paths and out of order delivery. The connectionless or connection oriented packet switched transmission system should have the following general security and safety features and should be demonstrated by evidence based detailed analysis:

- the equipment components and physical transmission mediums should be located in secure places
- the design and configuration should be fully documented and kept up to date, so that the transmission system can be maintained adequately
- network configuration can be very complex and difficult to maintain the configuration data
- network configuration can change very frequently due to multiple user requirements
- encryption is not used
- the risk of unauthorised access is not negligible

A transmission system containing these security and safety features can be classified as 'category 3 and open transmission system' as detailed in IEC 62280 as the requirements of precondition 3 cannot be fulfilled satisfactorily.

C.4. Wireless

Wireless transmission systems based on LIPD class licenced bands are detailed in T MU TE 41004 ST Packet Switched Networks – Wireless Local Area Networks, including its security and configuration requirements. It is recommended not to use 802.11 networks including industrial, scientific and medical (ISM) band if the system requires high availability.

The wireless transmission system should have the following general security and safety features and should be demonstrated by evidence based detailed analysis:

- wireless system's configuration can be very complex and difficult to maintain the configuration data adequately
- the equipment and transmission medium used need not be securely protected
- wireless system can be open to interferences and shared by public – need not be valid to licenced bands
- wireless system's configuration can change frequently due to multiple user requirements
- some part of the communication path cannot provide physical security
- the risk of unauthorised access is not negligible
A transmission system containing these security and safety features can be classified as 'category 3 and open transmission system' as detailed in IEC 62280 as the requirements of precondition 3 cannot be fulfilled satisfactorily.
Appendix D Threats and defences analysis example

This appendix contains one worked example of identified threats and defences in a signalling control systems interface for guidance purposes.

The example, provided in this Appendix is informative only regardless of whether it is used for safety related functions.

The following example is based on T HR SC 01251 SP Signalling Control Systems Interface Requirements, which can be used for interface between control systems and external systems. Based on that document, the protocols' in-built defences are listed within the 'defensive protocol characteristics' column in Table 4.

As the protocol has no adequate defences against corruption and masquerade threats, applications using this protocol should be using Category 1 transmission systems. Adding external defences such as encryption still cannot provide adequate defences.

Based on the functions performed by the applications, less stringent transmission systems can be used as long as there is evidence based supporting analysis, such as safety case.

Table 4 – Threats and defences for signalling control systems

<table>
<thead>
<tr>
<th>Threats</th>
<th>Defensive protocol characteristics</th>
<th>Additional defences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition</td>
<td>Message handshaking</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Session number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Established channel</td>
<td></td>
</tr>
<tr>
<td>Deletion</td>
<td>Message handshaking</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Session number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Established channel</td>
<td></td>
</tr>
<tr>
<td>Insertion</td>
<td>Message handshaking</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Source and destination identifiers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Established channel</td>
<td></td>
</tr>
<tr>
<td>Re sequence</td>
<td>Session number</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Established channel</td>
<td></td>
</tr>
<tr>
<td>Corruption</td>
<td>Limited CRC</td>
<td>None</td>
</tr>
<tr>
<td>Delay</td>
<td>Timeout mechanism</td>
<td>None</td>
</tr>
<tr>
<td>Masquerade</td>
<td>None</td>
<td>Encryption</td>
</tr>
</tbody>
</table>
Appendix E Communication path presentation example

Figure 6 provides an example of a representation of communication path characteristics. In this example redundant communication path arrangement path A and path B is shown in order to connect system A at location A and system B at location B.

This example is provided as a suggestion only. AEOs may present the required information in accordance with their own processes and procedures.